
Chapter 16 Component-based software engineering 119/11/2014

CS281 - Software Engineering

Component-based 
Software Engineering

 



Topics covered

� Components and component models 

� CBSE processes

� Component composition

Chapter 16 Component-based software engineering 219/11/2014



Component-Based Software Development 
(CBSE) 

� An approach to software development that relies on 
the reuse of entities called ‘software components’.

� CBSE is based on sound design principles:
▪ Components do not interfere with each other (i.e. 

independent)
▪ Component implementations are hidden
▪ Communication is through well-defined interfaces
▪ Components can be replaced if the interfaces are 

maintained
▪ Component infrastructures offer a range of standard 

services.

Chapter 16 Component-based software engineering 319/11/2014



CBSE Essentials

Chapter 16 Component-based software engineering 419/11/2014

Independent 
components 
specified by 

their interfaces

Component 
standards to 

facilitate 
component 
integration

Middleware that 
provides support 
for component 

inter-operability

A development 
process that is 

geared to reuse

Some of the component 
standards:
• Sun’s Enterprise Java Beans
• Microsoft’s COM and .NET
• CORBA’s CCM
They are competing :(



Component as a service provider

� The component is an independent, executable entity. It 
does not have to be compiled before it is used with other 
components.

� The services offered by a component are made available 
through an interface and all component interactions take 
place through that interface.

� The component interface is expressed in terms of 
parameterized operations and its internal state is never 
exposed. 

Chapter 16 Component-based software engineering 519/11/2014



Component access

� Components are accessed using remote procedure calls 
(RPCs).

� Each component has a unique identifier (usually a URL) 
and can be referenced from any networked computer.

� Therefore it can be called in a similar way as a 
procedure or method running on a local computer.

19/11/2014 Chapter 16 Component-based software engineering 6



Component interfaces

� Provides interface
▪ Defines the services that are provided by the component to other 

components.
▪ This interface, essentially, is the component API. It defines the 

methods that can be called by a user of the component. 

� Requires interface
▪ Defines the services that specifies what services must be made 

available for the component to execute as specified.
▪ This does not compromise the independence or deployability of 

a component because the ‘requires’ interface does not define 
how these services should be provided. 

Chapter 16 Component-based software engineering 719/11/2014



Component interfaces

Chapter 16 Component-based software engineering 8

Note UML notation. Ball and sockets can fit together.

19/11/2014



A model of a data collector component

Chapter 16 Component-based software engineering 919/11/2014



Elements Of A Component Model

� A component model is a definition of standards for 
component implementation, documentation and 
deployment.

� Examples of component models:
▪ EJB model (Enterprise Java Beans)
▪ COM+ model (.NET model)
▪ Corba Component Model

� The elements of a component model specifies:
▪ Interfaces
▪ Usage
▪ Deployment

Chapter 16 Component-based software engineering 1019/11/2014



Middleware support

� Component models are the basis for middleware that 
provides support for executing components.

� Component model implementations provide:
▪ Platform services that allow components written according to the 

model to communicate;
▪ Support services that are application-independent services used 

by different components.

� To use services provided by a model, components are 
deployed in a container. This is a set of interfaces used 
to access the service implementations.

Chapter 16 Component-based software engineering 1119/11/2014



Legacy system components

� Existing legacy systems that fulfil a useful business 
function can be re-packaged as components for reuse.

� This involves writing a wrapper component that 
implements provides and requires interfaces then 
accesses the legacy system.

� Although costly, this can be much less expensive than 
rewriting the legacy system.

Chapter 16 Component-based software engineering 1219/11/2014



Reusable components

� The development cost of reusable components may be 
higher than the cost of specific equivalents. This extra 
reusability enhancement cost should be an organization 
rather than a project cost.

� Generic components may be less space-efficient and 
may have longer execution times than their specific 
equivalents.

Chapter 16 Component-based software engineering 1319/11/2014



Component identification issues

� Trust. You need to be able to trust the supplier of a 
component. At best, an untrusted component may not 
operate as advertised; at worst, it can breach your 
security.

� Requirements. Different groups of components will 
satisfy different requirements.

� Validation. 
▪ The component specification may not be detailed enough to 

allow comprehensive tests to be developed.
▪ Components may have unwanted functionality. How can you test 

this will not interfere with your application?

Chapter 16 Component-based software engineering 1419/11/2014



Component validation 

� Component validation involves developing a set of test 
cases for a component (or, possibly, extending test 
cases supplied with that component) and developing a 
test harness to run component tests. 
▪ The major problem with component validation is that the 

component specification may not be sufficiently detailed to allow 
you to develop a complete set of component tests. 

� As well as testing that a component for reuse does what 
you require, you may also have to check that the 
component does not include any malicious code or 
functionality that you don’t need. 

Chapter 16 Component-based software engineering 1519/11/2014



Ariane launcher failure – validation failure?

In 1996, the 1st test flight of the Ariane 5 rocket 
ended in disaster when the launcher went out of 
control 37 seconds after take off. The problem 
was due to a reused component from a previous 
version of the launcher (the Inertial Navigation 
System) that failed because assumptions made 
when that component was developed did not hold 
for Ariane 5. The functionality that failed in this 
component was not required in Ariane 5!!

16Chapter 17 Software reuse



Component Composition

� The process of assembling components to create a 
system.

� Composition involves integrating components with each 
other and with the component infrastructure.

� Normally you have to write ‘glue code’ to integrate 
components.

� Glue Code: A code that allows components to work 
together. The glue code may be used also to resolve 
interface incompatibilities.

Chapter 16 Component-based software engineering 1719/11/2014



Interface Incompatibility

� Parameter incompatibility where operations have the 
same name but are of different types.

� Operation incompatibility where the names of operations 
in the composed interfaces are different.

� Operation incompleteness where the provides interface 
of one component is a subset of the requires interface of 
another.

18Chapter 17 Software reuse



Questions?

19


